|
The dynamic scraped surface heat exchanger (DSSHE) was designed to face some problems found in other types of heat exchangers. They increase heat transfer by: removing the fouling layers, increasing turbulence in case of high viscosity flow, and avoiding the generation of ice and other process by-products. DSSHEs incorporate an internal mechanism which periodically removes the product from the heat transfer wall. == Introduction == The most important technologies for indirect heat transfer use tubes (shell-and-tube exchangers) or flat surfaces (plate exchangers). Their goal is to exchange the maximum amount of heat per unit area by generating as much turbulence as possible below given pumping power limits. Typical approaches to achieve this consist of corrugating the tubes or plates or extending their surface with fins. However, these geometry conformation technologies, the calculation of optimum mass flows and other turbulence related factors become diminished when fouling appears, obliging designers to fit significantly larger heat transfer areas. There are several types of fouling, including particulate accumulation, precipitation (crystallization), sedimentation, generation of ice layers, etc. Another factor posing difficulties to heat transfer is viscosity. Highly viscous fluids tend to generate deep laminar flow, a condition with very poor heat transfer rates and high pressure losses involving a considerable pumping power, often exceeding the exchanger design limits. This problem becomes worsened frequently when processing non-newtonian fluids. The dynamic scraped surface heat exchangers (DSSHE) have been designed to face the above-mentioned problems. They increase heat transfer by: removing the fouling layers, increasing turbulence in case of high viscosity flow, and avoiding the generation of ice and other process by-products. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Dynamic scraped surface heat exchanger」の詳細全文を読む スポンサード リンク
|